Listen on Apple Podcasts | Listen on Spotify | Listen on YouTube
If you’ve spent any time in a gym in the past decade, you’re probably familiar with the benefits of a good pre-workout supplement.
You know, things like increased strength, endurance, and power, and heightened energy, mood, and focus.
You’re probably also familiar with their downsides—energy crashes, disrupted sleep, jitters, nausea, indigestion, and more.
Even if you haven’t encountered these problems, you’ve probably noticed that your pre-workout supplement has become less effective over time as your body becomes desensitized to caffeine.
All of these issues have given rise to the topic of this podcast: stim-free pre-workout supplements.
While the idea of taking a stimulant-free pre-workout might seem ridiculous at first blush (aren’t stimulants the whole point?), there are a few reasons you should consider doing so:
- They will boost your workout performance, although not quite as much as pre-workouts containing stimulants.
- They’ll help you avoid many of the negative effects of regular pre-workouts.
- They’ll help you maximize the benefits of regular pre-workouts when cycled properly (keep listening to learn how).
So, if you want to learn more about the benefits of pre-workout supplements, how to choose the best one for you, and how to use them to maximize your performance in the gym, this podcast is for you.
Let’s start at square one: what the heck is a pre-workout supplement?
Timestamps:
4:42 – What is a pre-workout supplement and why is it so popular?
7:27 – What are the 6 ingredients that make a high-quality pre-workout supplement?
11:53 – What are the benefits of a stem-free pre-workout supplement?
Mentioned on The Show:
What did you think of this episode? Have anything else to share? Let me know in the comments below!
+ Scientific References
- Ziegenfuss, T., Landis, J., & Hofheins, J. (2008). Acute supplementation with alpha-glycerylphosphorylcholine augments growth hormone response to, and peak force production during, resistance exercise. Journal of the International Society of Sports Nutrition, 5(S1), P15. https://doi.org/10.1186/1550-2783-5-s1-p15
- Lee, E. C., Maresh, C. M., Kraemer, W. J., Yamamoto, L. M., Hatfield, D. L., Bailey, B. L., Armstrong, L. E., Volek, J. S., McDermott, B. P., & Craig, S. A. S. (2010). Ergogenic effects of betaine supplementation on strength and power performance. Journal of the International Society of Sports Nutrition, 7. https://doi.org/10.1186/1550-2783-7-27
- Trepanowski, J. F., Farney, T. M., McCarthy, C. G., Schilling, B. K., Craig, S. A., & Bloomer, R. J. (2011). The effects of chronic betaine supplementation on exercise performance, skeletal muscle oxygen saturation, and associated biochemical parameters in resistance trained men. Journal of Strength and Conditioning Research, 25(12), 3461–3471. https://doi.org/10.1519/JSC.0b013e318217d48d
- Smith, A. E., Walter, A. A., Graef, J. L., Kendall, K. L., Moon, J. R., Lockwood, C. M., Fukuda, D. H., Beck, T. W., Cramer, J. T., & Stout, J. R. (2009). Effects of β-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial. Journal of the International Society of Sports Nutrition, 6. https://doi.org/10.1186/1550-2783-6-5
- Walter, A. A., Smith, A. E., Kendall, K. L., Stout, J. R., & Cramer, J. T. (2010). Six weeks of high-intensity interval training with and without β-alanine supplementation for improving cardiovascular fitness in women. Journal of Strength and Conditioning Research, 24(5), 1199–1207. https://doi.org/10.1519/JSC.0b013e3181d82f8b
- Sale, C., Saunders, B., Hudson, S., Wise, J. A., Harris, R. C., & Sunderland, C. D. (2011). Effect of β-alanine plus sodium bicarbonate on high-intensity cycling capacity. Medicine and Science in Sports and Exercise, 43(10), 1972–1978. https://doi.org/10.1249/MSS.0b013e3182188501
- Hill, C. A., Harris, R. C., Kim, H. J., Harris, B. D., Sale, C., Boobis, L. H., Kim, C. K., & Wise, J. A. (2007). Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids, 32(2), 225–233. https://doi.org/10.1007/s00726-006-0364-4
- Kern, B. D., & Robinson, T. L. (2011). Effects of β-alanine supplementation on performance and body composition in collegiate wrestlers and football players. Journal of Strength and Conditioning Research, 25(7), 1804–1815. https://doi.org/10.1519/JSC.0b013e3181e741cf
- Hoffman, J. R., Ratamess, N. A., Faigenbaum, A. D., Ross, R., Kang, J., Stout, J. R., & Wise, J. A. (2008). Short-duration β-alanine supplementation increases training volume and reduces subjective feelings of fatigue in college football players. Nutrition Research, 28(1), 31–35. https://doi.org/10.1016/j.nutres.2007.11.004
- Stout, J. R., Sue, B. S., Smith, A. E., Hartman, M. J., Cramer, J. T., Beck, T. W., & Harris, R. C. (2008). The effect of beta-alanine supplementation on neuromuscular fatigue in elderly (55-92 Years): A double-blind randomized study. Journal of the International Society of Sports Nutrition, 5. https://doi.org/10.1186/1550-2783-5-21
- Derave, W., Özdemir, M. S., Harris, R. C., Pottier, A., Reyngoudt, H., Koppo, K., Wise, J. A., & Achten, E. (2007). β-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. Journal of Applied Physiology, 103(5), 1736–1743. https://doi.org/10.1152/japplphysiol.00397.2007
- Stout, J. R., Cramer, J. T., Zoeller, R. F., Torok, D., Costa, P., Hoffman, J. R., Harris, R. C., & O’Kroy, J. (2007). Effects of β-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids, 32(3), 381–386. https://doi.org/10.1007/s00726-006-0474-z
- Suzuki, T., Morita, M., Kobayashi, Y., & Kamimura, A. (2016). Oral L-citrulline supplementation enhances cycling time trial performance in healthy trained men: Double-blind randomized placebo-controlled 2-way crossover study. Journal of the International Society of Sports Nutrition, 13(1). https://doi.org/10.1186/s12970-016-0117-z
- Bendahan, D., Mattei, J. P., Ghattas, B., Confort-Gouny, S., Le Guern, M. E., & Cozzone, P. J. (2002). Citrulline/malate promotes aerobic energy production in human exercising muscle. British Journal of Sports Medicine, 36(4), 282–289. https://doi.org/10.1136/bjsm.36.4.282
- Glenn, J. M., Gray, M., Wethington, L. N., Stone, M. S., Stewart, R. W., & Moyen, N. E. (2017). Acute citrulline malate supplementation improves upper- and lower-body submaximal weightlifting exercise performance in resistance-trained females. European Journal of Nutrition, 56(2), 775–784. https://doi.org/10.1007/s00394-015-1124-6
- Pérez-Guisado, J., & Jakeman, P. M. (2010). Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness. Journal of Strength and Conditioning Research, 24(5), 1215–1222. https://doi.org/10.1519/JSC.0b013e3181cb28e0
- Stepanski, E. J., & Wyatt, J. K. (2003). Use of sleep hygiene in the treatment of insomnia. In Sleep Medicine Reviews (Vol. 7, Issue 3, pp. 215–225). W.B. Saunders Ltd. https://doi.org/10.1053/smrv.2001.0246
- Roehrs, T., & Roth, T. (2008). Caffeine: Sleep and daytime sleepiness. In Sleep Medicine Reviews (Vol. 12, Issue 2, pp. 153–162). Sleep Med Rev. https://doi.org/10.1016/j.smrv.2007.07.004
- Boutrel, B., & Koob, G. F. (2004). What keeps us awake: The neuropharmacology of stimulants and wakefulness-promoting medications. In Sleep (Vol. 27, Issue 6, pp. 1181–1194). Associated Professional Sleep Societies,LLC. https://doi.org/10.1093/sleep/27.6.1181
- Souissi, N., Souissi, M., Souissi, H., Chamari, K., Tabka, Z., Dogui, M., & Davenne, D. (2008). Effect of time of day and partial sleep deprivation on short-term, high-power output. Chronobiology International, 25(6), 1062–1076. https://doi.org/10.1080/07420520802551568
- Nedeltcheva, A. V., Kilkus, J. M., Imperial, J., Schoeller, D. A., & Penev, P. D. (2010). Insufficient sleep undermines dietary efforts to reduce adiposity. Annals of Internal Medicine, 153(7), 435–441. https://doi.org/10.7326/0003-4819-153-7-201010050-00006
- Willson, C. (2018). The clinical toxicology of caffeine: A review and case study. In Toxicology Reports (Vol. 5, pp. 1140–1152). Elsevier Inc. https://doi.org/10.1016/j.toxrep.2018.11.002
- Boulenger, J. P., Uhde, T. W., Wolff, E. A., & Post, R. M. (1984). Increased Sensitivity to Caffeine in Patients With Panic Disorders: Preliminary Evidence. Archives of General Psychiatry, 41(11), 1067–1071. https://doi.org/10.1001/archpsyc.1983.01790220057009
- Klein, E., Zohar, J., Geraci, M. F., Murphy, D. L., & Uhde, T. W. (1991). Anxiogenic effects of m-CPP in patients with panic disorder: Comparison to caffeine’s anxiogenic effects. Biological Psychiatry, 30(10), 973–984. https://doi.org/10.1016/0006-3223(91)90119-7
- Coffin, V. L., & Spealman, R. D. (1987). Behavioral and cardiovascular effects of analogs of adenosine in cynomolgus monkeys. Journal of Pharmacology and Experimental Therapeutics, 241(1), 76–83.
- Ishak, W. W., Ugochukwu, C., Bagot, K., Khalili, D., & Zaky, C. (2012). Energy drinks: Psychological effects and impact on well-being and quality of life-A literature review. In Innovations in Clinical Neuroscience (Vol. 9, Issue 1, pp. 25–34). Matrix Medical Communications. www.dietfacts.com
- Fredholm, B. B. (1995). Adenosine, Adenosine Receptors and the Actions of Caffeine. Pharmacology & Toxicology, 76(2), 93–101. https://doi.org/10.1111/j.1600-0773.1995.tb00111.x
- Nehlig, A., Daval, J. L., & Debry, G. (1992). Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. In Brain Research Reviews (Vol. 17, Issue 2, pp. 139–170). Brain Res Brain Res Rev. https://doi.org/10.1016/0165-0173(92)90012-B
- Dunwiddie, T. V., & Masino, S. A. (2001). The Role and Regulation of Adenosine in the Central Nervous System. Annual Review of Neuroscience, 24(1), 31–55. https://doi.org/10.1146/annurev.neuro.24.1.31
- Daly, J., & Shi, D. (1999). The role of adenosine receptors in the central action of caffeine. In Caffeine and Behavior (Vol. 7, Issue 2, pp. 201–213). CRC Press. https://doi.org/10.1201/9781439822470.ch1
- Warren, G. L., Park, N. D., Maresca, R. D., McKibans, K. I., & Millard-Stafford, M. L. (2010). Effect of caffeine ingestion on muscular strength and endurance: A meta-analysis. Medicine and Science in Sports and Exercise, 42(7), 1375–1387. https://doi.org/10.1249/MSS.0b013e3181cabbd8
- Astrup, A., Toubro, S., Cannon, S., Hein, P., Breum, L., & Madsen, J. (1990). Caffeine: A double-blind, placebo-controlled study of its thermogenic, metabolic, and cardiovascular effects in healthy volunteers. American Journal of Clinical Nutrition, 51(5), 759–767. https://doi.org/10.1093/ajcn/51.5.759
- An, H. J., Choi, H. M., Park, H. S., Han, J. G., Lee, E. H., Park, Y. S., Um, J. Y., Hong, S. H., & Kim, H. M. (2006). Oral administration of hot water extracts of Chlorella vulgaris increases physical stamina in mice. Annals of Nutrition and Metabolism, 50(4), 380–386. https://doi.org/10.1159/000094303
- Kimura, K., Ozeki, M., Juneja, L. R., & Ohira, H. (2007). l-Theanine reduces psychological and physiological stress responses. Biological Psychology, 74(1), 39–45. https://doi.org/10.1016/j.biopsycho.2006.06.006
- Beck, T. W., Housh, T. J., Schmidt, R. J., Johnson, G. O., Housh, D. J., Coburn, J. W., & Malek, M. H. (2006). The acute effects of a caffeine-containing supplement on strength, muscular endurance, and anaerobic capabilities. Journal of Strength and Conditioning Research, 20(3), 506–510. https://doi.org/10.1519/18285.1
- Astorino, T. A., Rohmann, R. L., & Firth, K. (2008). Effect of caffeine ingestion on one-repetition maximum muscular strength. European Journal of Applied Physiology, 102(2), 127–132. https://doi.org/10.1007/s00421-007-0557-x