If you’re into weightlifting, you’ve become very acquainted with sore muscles.
You’ve done many reps of the “half-squat-toilet-fall.”
You’ve had the “is this just muscle soreness or am I actually dying?” thoughts.
And maybe you’ve even gone full Stockholm syndrome and now crave the daily debilitation.
Well, I’ve been there, I’ve learned some things, and now I’m going to pass on those lessons.
You see, like many people, I used to think muscle soreness was pretty black and white.
I assumed that sore muscles were a sign that I was doing something right, and the more sore I was, the more effective my workouts were.
(And as a corollary, I worried that workouts that produced little soreness also produced little results.)
Well, it turns out it’s not that simple.
Years ago, I used to do workouts that produced a tremendous amount of muscle soreness…and I made mediocre (at best) gains.
After dramatically changing the way I trained, however, I experienced far less muscle soreness but made far better progress.
In this episode, I’m going to explain why that is and what you need to know about sore muscles and training to optimize your results.
Let’s get started.
Oh and if you like this episode want to be be notified when new episodes go live, then head on over to iTunes, Stitcher, YouTube, Soundcloud, Spotify, iHeartRadio, or Google Play and subscribe.
Lastly, if you want to support the show, please drop a quick review of it over on iTunes. It really helps!
TIME STAMPS
4:30 – Why do muscles get sore?
6:36 – What is delayed onset muscle soreness?
8:00 – Does muscle soreness mean muscle growth?
9:07 – What is muscle damage?
13:41 – How do you get rid of sore muscles?
17:35 – Which supplements should I take for building muscle and recovering faster?
What did you think of this episode? Have anything else to share? Let me know in the comments below!
+ Scientific References
- Cheung, K., Hume, P. A., & Maxwell, L. (2003). Delayed onset muscle soreness: Treatment strategies and performance factors. In Sports Medicine (Vol. 33, Issue 2, pp. 145–164). Sports Med. https://doi.org/10.2165/00007256-200333020-00005
- Nosaka, K., Newton, M., & Sacco, P. (2002). Delayed-onset muscle soreness does not reflect the magnitude of eccentric exercise-induced muscle damage. Scandinavian Journal of Medicine and Science in Sports, 12(6), 337–346. https://doi.org/10.1034/j.1600-0838.2002.10178.x
- Crameri, R. M., Aagaard, P., Qvortrup, K., Langberg, H., Olesen, J., & Kjær, M. (2007). Myofibre damage in human skeletal muscle: Effects of electrical stimulation versus voluntary contraction. Journal of Physiology, 583(1), 365–380. https://doi.org/10.1113/jphysiol.2007.128827
- Hubal, M. J., Devaney, J. M., Hoffman, E. P., Zambraski, E. J., Gordish-Dressman, H., Kearns, A. K., Larkin, J. S., Adham, K., Patel, R. R., & Clarkson, P. M. (2010). CCL2 and CCR2 polymorphisms are associated with markers of exercise-induced skeletal muscle damage. Journal of Applied Physiology, 108(6), 1651–1658. https://doi.org/10.1152/japplphysiol.00361.2009
- Newham, D. J., Jones, D. A., Ghosh, G., & Aurora, P. (1988). Muscle fatigue and pain after eccentric contractions at long and short length. Clinical Science, 74(5), 553–557. https://doi.org/10.1042/cs0740553
- McHugh, M. P. (2003). Recent advances in the understanding of the repeated bout effect: The protective effect against muscle damage from a single bout of eccentric exercise. In Scandinavian Journal of Medicine and Science in Sports (Vol. 13, Issue 2, pp. 88–97). Scand J Med Sci Sports. https://doi.org/10.1034/j.1600-0838.2003.02477.x
- Eston, R. G., Mickleborough, J., & Baltzopoulos, V. (1995). Eccentric activation and muscle damage: biomechanical and physiological considerations during downhill running. British Journal of Sports Medicine, 29(2), 89–94. https://doi.org/10.1136/bjsm.29.2.89
- Mikkelsen, U. R., Langberg, H., Helmark, I. C., Skovgaard, D., Andersen, L. L., Kjær, M., & Mackey, A. L. (2009). Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise. Journal of Applied Physiology, 107(5), 1600–1611. https://doi.org/10.1152/japplphysiol.00707.2009
- Schoenfeld, B. J. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. In Journal of Strength and Conditioning Research (Vol. 24, Issue 10, pp. 2857–2872). J Strength Cond Res. https://doi.org/10.1519/JSC.0b013e3181e840f3
- Flann, K. L., Lastayo, P. C., McClain, D. A., Hazel, M., & Lindstedt, S. L. (2011). Muscle damage and muscle remodeling: No pain, no gain? Journal of Experimental Biology, 214(4), 674–679. https://doi.org/10.1242/jeb.050112
- Chen, T. C., & Nosaka, K. (2006). Responses of elbow flexors to two strenuous eccentric exercise bouts separated by three days. Journal of Strength and Conditioning Research, 20(1), 108–116. https://doi.org/10.1519/R-16634.1
- Chapman, D., Newton, M., Sacco, P., & Nosaka, K. (2006). Greater muscle damage induced by fast versus slow velocity eccentric exercise. International Journal of Sports Medicine, 27(8), 591–598. https://doi.org/10.1055/s-2005-865920
- Moyer, C. A., Rounds, J., & Hannum, J. W. (2004). A Meta-Analysis of Massage Therapy Research. Psychological Bulletin, 130(1), 3–18. https://doi.org/10.1037/0033-2909.130.1.3
- Macdonald, G. Z., Button, D. C., Drinkwater, E. J., & Behm, D. G. (2014). Foam rolling as a recovery tool after an intense bout of physical activity. Medicine and Science in Sports and Exercise, 46(1), 131–142. https://doi.org/10.1249/MSS.0b013e3182a123db
- Andersen, L. L., Jay, K., Andersen, C. H., Jakobsen, M. D., Sundstrup, E., Topp, R., & Behm, D. G. (2013). Acute effects of massage or active exercise in relieving muscle soreness: Randomized controlled trial. Journal of Strength and Conditioning Research, 27(12), 3352–3359. https://doi.org/10.1519/JSC.0b013e3182908610
- Boyle, C. A., Sayers, S. P., Jensen, B. E., Headley, S. A., & Manos, T. M. (2004). The effects of yoga training and a single bout of yoga on delayed onset muscle soreness in the lower extremity. Journal of Strength and Conditioning Research, 18(4), 723–729. https://doi.org/10.1519/14723.1
- Branch, J. D. (2003). Effect of creatine supplementation on body composition and performance: A meta-analysis. International Journal of Sport Nutrition and Exercise Metabolism, 13(2), 198–226. https://doi.org/10.1123/ijsnem.13.2.198
- Volek, J. S., Ratamess, N. A., Rubin, M. R., Gómez, A. L., French, D. N., McGuigan, M. M., Scheett, T. P., Sharman, M. J., Häkkinen, K., & Kraemer, W. J. (2004). The effects of creatine supplementation on muscular performance and body composition responses to short-term resistance training overreaching. European Journal of Applied Physiology, 91(5–6), 628–637. https://doi.org/10.1007/s00421-003-1031-z
- Eckerson, J. M., Stout, J. R., Moore, G. A., Stone, N. J., Iwan, K. A., Gebauer, A. N., & Ginsberg, R. (2005). Effect of creatine phosphate supplementation on anaerobic working capacity and body weight after two and six days of loading in men and women. Journal of Strength and Conditioning Research, 19(4), 756–763. https://doi.org/10.1519/R-16924.1
- Bassit, R. A., Pinheiro, C. H. D. J., Vitzel, K. F., Sproesser, A. J., Silveira, L. R., & Curi, R. (2010). Effect of short-term creatine supplementation on markers of skeletal muscle damage after strenuous contractile activity. European Journal of Applied Physiology, 108(5), 945–955. https://doi.org/10.1007/s00421-009-1305-1
- Kraemer, W. J., Volek, J. S., French, D. N., Rubin, M. R., Sharman, M. J., Gómez, A. L., Ratamess, N. A., Newton, R. U., Jemiolo, B., Craig, B. W., & Häkkinen, K. (2003). The effects of L-carnitine L-tartrate supplementation on hormonal responses to resistance exercise and recovery. Journal of Strength and Conditioning Research, 17(3), 455–462. https://doi.org/10.1519/1533-4287(2003)017<0455:TEOLLS>2.0.CO;2
- Ho, J. Y., Kraemer, W. J., Volek, J. S., Fragala, M. S., Thomas, G. A., Dunn-Lewis, C., Coday, M., Häkkinen, K., & Maresh, C. M. (2010). L-Carnitine l-tartrate supplementation favorably affects biochemical markers of recovery from physical exertion in middle-aged men and women. Metabolism: Clinical and Experimental, 59(8), 1190–1199. https://doi.org/10.1016/j.metabol.2009.11.012